
Dependency Injection 💉
&

Service Locators 🔍
a.k.a.

how to manage dependencies and ensure testability 

aclima93.com 🔗



A simple MVVM codebase that has a Service

aclima93.com 🔗



Single responsibility
Open–closed
Liskov substitution
Interface segregation
Dependency inversion

aclima93.com 🔗



Dependency Inversion Principle:

1. High-level modules should not import anything from low-level modules.
Both should depend on abstractions (e.g., interfaces).

2. Abstractions should not depend on details. 
Details (concrete implementations) should depend on abstractions.

aclima93.com 🔗



Dependency Inversion Principle:

1. High-level modules should not import anything from low-level modules.
Both should depend on abstractions (e.g., interfaces).

2. Abstractions should not depend on details. 
Details (concrete implementations) should depend on abstractions.

What does this mean? Let’s break it down.

aclima93.com 🔗



Dependency Inversion Principle:

1. High-level modules should not import anything from low-level modules.
Both should depend on abstractions (e.g. interfaces protocols).

2. Abstractions should not depend on details. 
Details (concrete implementations) should depend on abstractions.

What does this mean? Let’s break it down.

If we have an object (`class Object`) that is necessary for some piece of code to 
work, we should replace it with a protocol representing it (`protocol 
ObjectRepresentable`), and have the object conform to that protocol (`class 
Object: ObjectRepresentable`).

That way, we can more easily inject (foreshadowing) a substitute in its place, without 
worrying about the implementation details of the original object.

aclima93.com 🔗



Dependency Injection
A.k.a.

don’t hide your dependencies in the details

aclima93.com 🔗



Service DI

aclima93.com 🔗



Service

aclima93.com 🔗



Service

��

aclima93.com 🔗



Service

�� ��

aclima93.com 🔗



Service Stubbing

aclima93.com 🔗



Service Stubbing

��

��

aclima93.com 🔗



Service Mocking

��

��

aclima93.com 🔗



ViewModel DI

aclima93.com 🔗



ViewModel

aclima93.com 🔗



ViewModel

��

aclima93.com 🔗



ViewModel

aclima93.com 🔗



ViewModel

��

�
�

aclima93.com 🔗



ViewModel

aclima93.com 🔗



ViewModel

��
��

aclima93.com 🔗



ViewModel

��
��

aclima93.com 🔗



ViewModel

��

��

aclima93.com 🔗



ViewModel Mocking

��

��

✨ remember?

aclima93.com 🔗



What are the pitfalls of our DI 
implementation?

aclima93.com 🔗



What are the pitfalls of our DI implementation?

What’s the lifecycle of a `static` property?

aclima93.com 🔗



What are the pitfalls of our DI implementation?

What’s the lifecycle of a `static` property?

https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264 :

Stored type properties are lazily initialized on their first access. They’re 
guaranteed to be initialized only once, even when accessed by multiple 
threads simultaneously, and they don’t need to be marked with the lazy 
modifier. 

aclima93.com 🔗

https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264


What are the pitfalls of our DI implementation?

What’s the lifecycle of a `static` property?

https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264 :

Stored type properties are lazily initialized on their first access. They’re 
guaranteed to be initialized only once, even when accessed by multiple 
threads simultaneously, and they don’t need to be marked with the lazy 
modifier.

Why does this matter?

aclima93.com 🔗

https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264


What are the pitfalls of our DI implementation?

What’s the lifecycle of a `static` property?

https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264 :

Stored type properties are lazily initialized on their first access. They’re 
guaranteed to be initialized only once, even when accessed by multiple 
threads simultaneously, and they don’t need to be marked with the lazy 
modifier. 

Why does this matter?

They never get cleaned up after being accessed the first time, 
until you terminate the app! So if we have a bunch of huge services… 💥

aclima93.com 🔗

https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264


Service Locators

aclima93.com 🔗



Service Locators - Pseudo-Code

- Hold all of the services that should be deallocated somewhere
(stored in a collection, e.g. Dictionary key-value)

- Have something to manage and search for services in that collection

ServiceLocator.swift
- var services = [ServiceName : Any]()
- register(Service)
- get(Service)
- unregister(Service)

aclima93.com 🔗



Service Locator Code
How many lines do you think it will take? 😱

aclima93.com 🔗



Unit Tests 💪

aclima93.com 🔗



Reading Materials

Wikipedia

● https://en.wikipedia.org/wiki/Dependency_inversion_principle 
● https://en.wikipedia.org/wiki/Dependency_injection 
● https://en.wikipedia.org/wiki/Service_locator_pattern 

Stored properties - https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264 

Service Locators

● https://github.com/Mindera/Alicerce/blob/408a3015dc578f2598c14645b942f04c9042d7ce/Sources/Utils/ServiceLocator.swift 
● https://github.com/Mindera/Alicerce/blob/408a3015dc578f2598c14645b942f04c9042d7ce/Tests/AlicerceTests/Utils/ServiceLoc

atorTests.swift 
● https://quickbirdstudios.com/blog/swift-dependency-injection-service-locators/ 
● https://stevenpcurtis.medium.com/the-service-locator-pattern-in-swift-5db2c770bcc 
● https://www.oracle.com/java/technologies/service-locator.html 
● https://www.baeldung.com/java-service-locator-pattern 

aclima93.com 🔗

https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Service_locator_pattern
https://docs.swift.org/swift-book/LanguageGuide/Properties.html#ID264
https://github.com/Mindera/Alicerce/blob/408a3015dc578f2598c14645b942f04c9042d7ce/Sources/Utils/ServiceLocator.swift
https://github.com/Mindera/Alicerce/blob/408a3015dc578f2598c14645b942f04c9042d7ce/Tests/AlicerceTests/Utils/ServiceLocatorTests.swift
https://github.com/Mindera/Alicerce/blob/408a3015dc578f2598c14645b942f04c9042d7ce/Tests/AlicerceTests/Utils/ServiceLocatorTests.swift
https://quickbirdstudios.com/blog/swift-dependency-injection-service-locators/
https://stevenpcurtis.medium.com/the-service-locator-pattern-in-swift-5db2c770bcc
https://www.oracle.com/java/technologies/service-locator.html
https://www.baeldung.com/java-service-locator-pattern


Questions?
Thank you for coming to my TED talk

aclima93.com 🔗


